СПРАВОЧНЫЕ ДАННЫЕ

множители и приставки для образования десятичных кратных и дольных единиц

Наименование	Обозначение	Множитель	Наименование	Обозначение	Множитель
тера	Т	1012	деци	д	10^{-1}
гига	Г	10^{9}	санти	c	10-2
мега	M	10^6	милли	M	10-3
кило	к	10^3	микро	MK	10^{-6}
гекто	г	10^2	нано	H	10^{-9}
дека	да	10	пико	п	10^{-12}

НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ФОРМУЛЫ

Длина окружности $l = \pi D = 2\pi R$

Площадь круга $S = \frac{\pi D^2}{4} = \pi R^2$

Площадь поверхности шара $S = 4\pi R^2$

Объём шара $V = \frac{4}{3}\pi R^3$

Объём прямоугольного параллелепипеда V=abc

Объём цилиндра $V=Sh=\pi R^2 h$

некоторые сведения о земле, солнце и луне ¹⁾						
Радиус Земли	6400 км					
Радиус Солнца	700 000 км					
Радиус Луны	1 740 км					
Расстояние от Земли до Солнца	150 млн км					
Расстояние от Земли до Луны	380 000 км					
Период обращения Луны вокруг Земли	27,3 сут.					
Масса Земли	$6\cdot 10^{24}{ m kr}$					
Масса Солнца	$2\cdot 10^{30}\mathrm{kr}$					
Масса Луны	$7,3\cdot 10^{22}\mathrm{kr}$					

¹⁾ Приведены с округлением.

некоторые физические постоянные					
Гравитационная постоянная	$G = 6.67 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kr}^2$				
Скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$				
Элементарный электрический заряд	$e = 1.6 \cdot 10^{-19} \text{ Km}$				
Атомная единица массы	1 a.e. $\mathbf{m} \cdot = 1,66 \cdot 10^{-27} \text{ kg}$				
Масса электрона	$m_e = 9.1 \cdot 10^{-31} \text{ kr} = 0.00055 \text{ a.e.m.}$				

Масса электрона $m_e = 9,1 \cdot 10^{-31} \text{ кr} = 0,00055 \text{ a.e.м.}$ Масса протона $m_p = 1,6726 \cdot 10^{-27} \text{ кr} = 1,00728 \text{ a.e.м.}$ Масса нейтрона $m_n = 1,6749 \cdot 10^{-27} \text{ кr} = 1,00866 \text{ a.e.м.}$

Электронвольт 1 эВ = $1,6 \cdot 10^{-19}$ Дж Постоянная Планка $h = 6,63 \cdot 10^{-34}$ Дж с

плотность некоторых веществ							
Вещество	Вещество Плотность, кг/м³						
Алюминий	2700						
Вода	1000						
Железо	7800						
Золото	19300						
Керосин	800						
Лёд	900						
Медь	8900						
Нефть	800						
Ртуть	13600						
Свинец	11300						
Сталь	7800						
Чугун	7000						

ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ТРЕНИЯ ДЛЯ НЕКОТОРЫХ ВИДОВ ПОВЕРХНОСТЕЙ					
Сталь по льду	0,015				
Сталь по стали	0,03-0,09				
Дерево по дереву	0,2—0,5				
Шины по сухому асфальту	0,5—0,7				
Шины по мокрому асфальту	0,35—0,45				
Шины по гладкому льду	0,15-0,20				

	Разно	сть показа	ний сухого	и влажного	термометр	ов, °С
Показания сухого термометра, °C	0	1	2	3	4	5
cynoro ropmomorpa,		От	носительная	влажность	, %	
20	100	91	83	74	66	59
21	100	91	83	75	67	60
22	100	92	83	76	68	61
23	100	92	84	76	69	61
24	100	92	84	7:7	69	62
25	100	92	84	77	70	63
26	100	92	85	78	71	64
27	100	92	85	78	71	65
28	100	93	85	78	72	65
29	100	93	86	79	72	66
30	100	93	86	79	73	67

ЗАВИСИМОСТЬ ДАВЛЕНИЯ НАСЫЩЕННОГО ВОДЯНОГО ПАРА ОТ ТЕМПЕРАТУРЫ					
Температура <i>t</i> , °С	Давление <i>р_н,</i> кПа				
0	0,61				
3	0,76				
6	0,93				
10	1,23				
15	1,71				
17	1,93				
18	2,07				
19	2,20				
20	2,33				
25	3,17				
30	4,24				
50	12,34				
80	47,3				
90	70,11				
100	100				

ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА НЕКОТОРЫХ ИЗОТОПОВ¹⁾

Изотоп	Масса нейтрального атома, а.е.м.	Изотоп	Масса нейтрального атома, а.е.м.
¹ ₁ Н (водород)	1,00783	¹² С (углерод)	12,00000
² Н (дейтерий)	2,01410	¹³ С (углерод)	13,00335
3_1 Н (тритий)	3,01605	¹⁴ N (азот)	14,00307
³ Не (гелий)	3,01602	¹⁵ ₇ N (азот)	15,00011
⁴ ₂ Не (гелий)	4,00260	¹⁷ 8О (кислород)	16,99913
6_3 Li (литий)	6,01513	²⁷ ₁₃ Al (алюминий)	26,98146
$^{7}_{3}$ Li (литий)	7,01601	³⁰ Si (кремний)	29,97376
⁸ ₄ Ве (бериллий)	8,00531	²²⁶ Ra (радий)	226,02435
¹⁰ ₅ В (бор)	10,01294	²³⁸ U (уран)	238,05077
¹¹ ₅ В (бор)	11,00931		

Механика $x = x_0 + v_{0x}t + \frac{a_x t^2}{2}$ $v_x = v_{0x} + a_x t$ $l = \frac{\left|v_{\text{R}}^2 - v_{\text{H}}^2\right|}{2a}$ $a = \frac{v^2}{r}$ $\omega = 2\pi v = \frac{2\pi}{r}$

ОСНОВНЫЕ ФОРМУЛЫ КУРСА ФИЗИКИ 10 КЛАССА

$$F = G \frac{m_1 m_2}{R^2}$$
 $F = k|x|$ $F_{ ext{rp. ck}} = \mu N$ $F_{ ext{rp. lok}} \leq \mu N$ $ec{p} = m ec{v}$ $\Delta ec{p} = ec{F} \Delta t$ $A = F s \cos lpha$ $P = \frac{A}{t} = F v$

 $E_n = mgh$

M = Fl

 $N = \nu N_A$

$$E_p = rac{kx^2}{2}$$
 $E_k = rac{mv^2}{2}$ $E_{ ext{mex}} = E_p + E_k$

Молекулярная физика и термодинамика

$$E_p = \frac{1}{2}$$
 $E_k = \frac{1}{2}$ $E_{\text{mex}} = E_p + E_k$

$$p = \frac{F}{S}$$
 $p = \rho g h$ $F_{\text{A}} = \rho g V_{\text{norp}}$

m = vM $pV = \frac{m}{M}RT = vRT$ $p = \frac{1}{2}nm_0\overline{v^2}$

$$Q = cm(t_{R} - t_{H}) \qquad Q = qm \qquad Q = \Delta U + A_{T} \qquad U = \frac{3}{2} vRT$$

$$U = \frac{3}{2} pV \qquad A = p\Delta V \qquad n = \frac{A_{HOR}}{2} \cdot 100\% \qquad n = \frac{Q_{1} - Q_{2}}{2} \cdot 100\%$$

 $p = \frac{2}{3}n\bar{E} \qquad \qquad \bar{E} = \frac{3}{2}kT \qquad \qquad \bar{v}^2 = \frac{3kT}{m_0} = \frac{3RT}{M} \qquad \qquad \varphi = \frac{p}{n} \cdot 100\%$

$$U = \frac{3}{2}pV$$
 $\eta = \frac{A_{\text{пол}}}{Q_1} \cdot 100\%$ $\eta = \frac{Q_1 - Q_2}{Q_1} \cdot 100\%$

$$U = \frac{3}{2}pV$$
 $A_{r} = p\Delta V$ $\eta = \frac{A_{non}}{Q_{1}} \cdot 100\%$ $\eta = \frac{Q_{1} - Q_{2}}{Q_{1}} \cdot 100\%$

$$\eta_{\max} = \frac{T_1 - T_2}{T_1} \cdot 100\%$$
 $Q = \lambda m$ $Q = Lm$

$$\eta_{\text{max}} = \frac{T_1 - T_2}{T_1} \cdot 100\%$$
 $Q = \lambda m$
 $Q = Lm$

$$F = k \frac{|q_1| \cdot |q_2|}{\varepsilon r^2}$$
 $\vec{E} = \frac{\vec{F}}{q}$ $A = qU$ $C = \frac{q}{U}$ $C = \frac{\varepsilon \varepsilon_0 S}{d}$

$$W_p = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$$
 $Q = I^2Rt$ $A = IUt$ $P = IU$

$$\mathcal{E} = \frac{A_{\text{cr}}}{q} \qquad I = \frac{\mathcal{E}}{R + r} \qquad U = \mathcal{E} - Ir \qquad I_{\text{K3}} = \frac{\mathcal{E}}{r} \qquad m = \frac{m_0 q}{q n}$$

некоторые физические постоянные

Гравитационная постоянная

Элементарный электрический заряд

Дерево по дереву

Шины по сухому асфальту

Шины по гладкому льду

Шины по мокрому асфальту

Скорость света в вакууме

Атомная единица массы

Масса электрона

Масса протона

 $G = 6.67 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$

1 a.e.m. = $1,66 \cdot 10^{-27}$ kr

 $m_e = 9.1 \cdot 10^{-31} \text{ kr} = 0.00055 \text{ a.e.m.}$

0,2-0,5

0.5 - 0.70,35-0,45

0,15-0,20

 $m_{\rm p} = 1,6726 \cdot 10^{-27} \text{ kg} = 1,00728 \text{ a.e.m.}$

 $c = 3 \cdot 10^8 \text{ m/c}$

 $e = 1.6 \cdot 10^{-19}$ Кл

•	P
Масса нейтрона	$m_n = 1,6749 \cdot 10^{-27} \text{ kr} = 1,00866 \text{ a.e.m.}$
Электронвольт	$1 \ \mathrm{əB} = 1,6 \cdot 10^{-19} \ \mathrm{Дж}$
Постоянная Планка	$h = 6.63 \cdot 10^{-34}$ Дж · с
плотн	юсть некоторых веществ
Вещество	Плотность, кг/м ³
Алюминий	2700
Вода	1000
Железо	7800
Золото	19300
Керосин	800
Лёд	900
Медь	8900
Нефть	800
Ртуть	13600
Свинец	11300
Сталь	7800
Чугун	7000
<u> </u>	
	ния коэффициента трения оторых видов поверхностей
Сталь по льду	0,015
Сталь по стали	0,03—0,09

ОСНОВНЫЕ ФОРМУЛЫ КУРСА ФИЗИКИ 11 КЛАССА

Электродинамика

$$F_{\rm A} = BIl\sin\alpha$$

$$F_{\mathrm{JI}} = Bqv\sin\alpha$$

 $\Phi = BS\cos\alpha$

$$C_i = -\frac{\Delta \Phi}{\Delta t}$$

$$\mathscr{E}_{i} = -\frac{\Delta \Phi}{\Delta t} \qquad \Phi = LI \qquad \mathscr{E}_{si} = -L\frac{\Delta I}{\Delta t} \qquad W_{M} = \frac{LI^{2}}{2}$$

Колебания и волны

$$x = x_{\text{max}} \cos \omega t$$

$$\sqrt{l}$$

$$\pi\sqrt{rac{m}{k}}$$

$$T = 2\pi \sqrt{\frac{l}{g}} \qquad T = 2\pi \sqrt{\frac{m}{k}} \qquad T = 2\pi \sqrt{LC}$$

$$\frac{U_2}{U_1} = \frac{N_2}{N_1}$$
 $X_C = \frac{1}{\omega C}$ $X_L = \omega L$ $v = \frac{\lambda}{T} = \lambda v$

Оптика и элементы теории относительности

	n_{e}			
=	_	=	n	
	n_1			

 $d\sin\varphi_k = k\lambda$

 $\sin \alpha_0 = \frac{1}{n}$

$$\Delta d = k\lambda$$

 $D=\frac{1}{R}$

$$\Gamma = \frac{H}{h} \qquad \qquad \frac{1}{d} + \frac{1}{f} = \frac{1}{F}$$

$$n=\frac{c}{v}$$

$$E_0 = mc^2$$

Квантовая физика

$$E = hv$$

$$E_{k \max} = eU_3$$
 $hv = A_{\text{BMX}} + E_{k \max}$ $v_{\min} = \frac{A_{\text{BMX}}}{h}$

$$\lambda = \frac{h}{p}$$

$$p=\frac{hv}{c}$$

$$h \vee_{kn} = E_k - E_n$$

$$E_{_{\mathrm{CB}}} = \Delta M \cdot c^2$$

$$N(t) = N_0 \cdot 2^{-\frac{t}{T}}$$

$$\Delta M = Zm_p + Nm_n - M_g$$

ТАБЛИЦА Д. И. МЕНДЕЛЕЕВА

год	Ħ				груп	пы э	леме	нтов		
Период	Ряд	I	II	III	IV	v	VI	VII		VIII
I	1	(H)						Н 1,00797 Водород	Не 4,0026	Обозначение Атомный элемента номер
II	2	Li 3 Литий 6,939	Ве 9,0122 Бериллий	B 5 50p 5	С 6 12.01115 Углерод	N 7 A30T 7	O 8 15,9994 Кислород	F 9 18,9984	Ne 10 Неон 20,179	Li 3 Литий (
III	3	Na 11 22,9898 Натрий	Mg 12 24,305 Магний	Al 13 26,9815 Алюминий	Si 14 28,086 Кремний	P 15 30,9738 Фосфор	S 16 32,064 Cepa	С1 17 35,453	Аг 18 39,948 Аргон	Относительная атомная масса
IV	4	K 19 Калий 39,102	Са 20 40,08 Кальций	21 Sc 44,956 Скандий	22 47,90 Ті Титан	23 V 50.942 Ванадий	24 51,996 Cr Xpom	25 Mn 54,9380 Mn Марганец	26 Fe 55,847 Железо	27 58,9330 Со 28 58,71 Ni Кобальт Никель
1 1	5	²⁹ Cu 63,546 Медь	30 Zn 65,37 Цинк	Ga 31 Галлий	Ge 32 _{72,59} Германий	As 33 _{74,9216} Мышьяк	Se 34 78,96 Селен	Br 35 5pom 79,904	Кг 36 криптон	
v	6	Rb 37 Рубидий 85,47	Sr 38 87,62 Стронций	39 88,905 Иттрий	40 Zr 91.22 Ц ирконий	41 Nb 92,906 Ниобий	42 Мо 95,94 Мо Молибден	43 Тс [99] Технеций	44 Ru 101,07 P утений	45 Rh 46 Pd 106.4 Палладий
*	7	47 107,868 Ag Серебро	48 Сd 112,40 Кадмий	In 49 114,82 Индий	Sn 50 Олово 118,69	Sb 51 Сурьма	Те 52 127,60	I 53 Иод 126,9044	Хе 54 Ксенон	
VI	8	Сs 55 Цезий 55 Цезий	Ва 56 Барий 137,34	57 La* 138,91 Лантан	72 Hf 178,49 Гафний	73 Та 180,948 Тантал	74 W 183,85 Вольфрам	75 186,2 Re Рений	76 190,2 Ов Осмий	77 Ir 78 Pt 192,2 Иридий Платина
V1	9	79 Au 196,967 Золото	80 200.59 Нg Ртуть	Т1 81 204.37 Таллий	Рb 82 Свинец	Ві 83 Висмут	Ро 84 Полоний	At 85 ACTAT [210]	Rn 86 [222]	
VII	10	Fr 87 [223] Франций	Ra 88 [226]	89 Ас** [227] Актиний	104 Rf [261] Резерфордий	105 Db [262] Дубний	106 Sg [263] Сиборгий	107 [262] Вh Борий	108 [265] Нs Хассий	109 Мt 110 [266] Мейтнерий
Ланта 14 28	С _{0,12} Се Церий	59 Рг 60 140,907 Празеодим	Nd 61 4,24 Неодим Прог	Рт 62 Sn 150,35 Самари	1 63 Eu 6 151,96 I	4 Gd 65 57,25 вдолиний	ТЬ 66 D 162,50 Рербий Диспроз	у 67 Но 164,930 Гольмий	68 Ег 69 167,26 Эрбий	Tm 70 Yb 71 Lu 173,04 Лютеций

Bk | 98

[247] [252]* [254] Берклий Калифорний Эйнштейний

101 **Md** 102 **No** [255] Менделевий Нобелий

[256] Лоуренсий

Es 100 Fm

Pa 92 238,03

U 93 **Np**

95 **Am** [243] Америций

[244] Плутоний [247] Кюрий

90 **Th** 91 **Pa** 232,038 Протистивий